Bisulfite genomic sequencing: systematic investigation of critical experimental parameters
نویسندگان
چکیده
Bisulfite genomic sequencing is the method of choice for the generation of methylation maps with single-base resolution. The method is based on the selective deamination of cytosine to uracil by treatment with bisulfite and the sequencing of subsequently generated PCR products. In contrast to cytosine, 5-methylcytosine does not react with bisulfite and can therefore be distinguished. In order to investigate the potential for optimization of the method and to determine the critical experimental parameters, we determined the influence of incubation time and incubation temperature on the deamination efficiency and measured the degree of DNA degradation during the bisulfite treatment. We found that maximum conversion rates of cytosine occurred at 55 degrees C (4-18 h) and 95 degrees C (1 h). Under these conditions at least 84-96% of the DNA is degraded. To study the impact of primer selection, homologous DNA templates were constructed possessing cytosine-containing and cytosine-free primer binding sites, respectively. The recognition rates for cytosine (>/=97%) and 5-methylcytosine (>/=94%) were found to be identical for both templates.
منابع مشابه
CpG_MPs: identification of CpG methylation patterns of genomic regions from high-throughput bisulfite sequencing data
High-throughput bisulfite sequencing is widely used to measure cytosine methylation at single-base resolution in eukaryotes. It permits systems-level analysis of genomic methylation patterns associated with gene expression and chromatin structure. However, methods for large-scale identification of methylation patterns from bisulfite sequencing are lacking. We developed a comprehensive tool, CpG...
متن کاملComparison and quantitative verification of mapping algorithms for whole-genome bisulfite sequencing
Coupling bisulfite conversion with next-generation sequencing (Bisulfite-seq) enables genome-wide measurement of DNA methylation, but poses unique challenges for mapping. However, despite a proliferation of Bisulfite-seq mapping tools, no systematic comparison of their genomic coverage and quantitative accuracy has been reported. We sequenced bisulfite-converted DNA from two tissues from each o...
متن کاملEnhanced Reduced Representation Bisulfite Sequencing for Assessment of DNA Methylation at Base Pair Resolution
DNA methylation pattern mapping is heavily studied in normal and diseased tissues. A variety of methods have been established to interrogate the cytosine methylation patterns in cells. Reduced representation of whole genome bisulfite sequencing was developed to detect quantitative base pair resolution cytosine methylation patterns at GC-rich genomic loci. This is accomplished by combining the u...
متن کاملTechnical Considerations for Reduced Representation Bisulfite Sequencing with Multiplexed Libraries
Reduced representation bisulfite sequencing (RRBS), which couples bisulfite conversion and next generation sequencing, is an innovative method that specifically enriches genomic regions with a high density of potential methylation sites and enables investigation of DNA methylation at single-nucleotide resolution. Recent advances in the Illumina DNA sample preparation protocol and sequencing tec...
متن کاملEpiGnomeTM Methyl-Seq Kit: a novel post–bisulfite conversion library prep method for methylation analysis
Epigenomics is increasingly becoming an important field of research, and the ability to detect and quantify DNA methylation accurately is now critical for numerous fields of study, including disease biology and gene expression. The differential reactivities of methylated and nonmethylated cytosines in DNA with sodium bisulfite forms the basis for their identification in the genome by sequencing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 29 13 شماره
صفحات -
تاریخ انتشار 2001